108上第1次段考-台北-麗山高中-高一(詳解)
範圍:翰林 第一冊1-1~2-2
(※索取各種題目檔案請來信索取。)
一、單選題(每題5分,共10分)
- ${{3}^{k}}=a-1$,${{3}^{-k}}=-b+1$,因${{3}^{k}}$,${{3}^{-k}}$互為倒數$\Rightarrow $$\displaystyle{\frac{1}{a-1}}=-b+1$$\Rightarrow $$b-1=\displaystyle{\frac{-1}{a-1}}$$\Rightarrow $$b=1+\displaystyle{\frac{-1}{a-1}}$$=\displaystyle{\frac{a-2}{a-1}}$,選(5)
- (1) $0.3\overline{43}=a$$\Rightarrow $$100a=34.3\overline{34}$$\Rightarrow $$99a=34$$\Rightarrow $$a=\displaystyle{\frac{34}{99}}$,錯誤
(2) $\displaystyle{\frac{34}{99}}>\displaystyle{\frac{33}{99}}=\displaystyle{\frac{1}{3}}$,正確
(3) $0.\overline{34}=0.3434\cdots \cdots >0.343$,正確
(4) $0.\overline{34}=0.3434\cdots \cdots <0.35$,正確
(5) $0.3\overline{43}=0.34\overline{34}=0.\overline{34}$,正確
故選(1)
二、填充題I(每題5分,共40分)
- $a=\displaystyle{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\cdot \displaystyle{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}}=5-2\sqrt{6}$
$\displaystyle{\frac{1}{a}}=\displaystyle{\frac{1}{5-2\sqrt{6}}}=5+2\sqrt{6}$
$\Rightarrow $$a+\displaystyle{\frac{1}{a}}=10$
$\Rightarrow $${{(a+\displaystyle{\frac{1}{a}})}^{2}}={{a}^{2}}+2\cdot a\cdot \displaystyle{\frac{1}{a}}+\displaystyle{\frac{1}{{{a}^{2}}}}=100$
$\Rightarrow $${{a}^{2}}+2+\displaystyle{\frac{1}{{{a}^{2}}}}=100$
$\Rightarrow $${{a}^{2}}+\displaystyle{\frac{1}{{{a}^{2}}}}=98$
- 由${{9}^{x}}={{15}^{xy}}$得$9={{15}^{y}}$;由${{25}^{y}}={{15}^{xy}}$得$25={{15}^{x}}$
$9\times 25={{15}^{y}}\cdot {{15}^{x}}$$\Rightarrow $$225={{15}^{x+y}}$$\Rightarrow $$x+y=2$
- 由定義${{10}^{k}}=3$,所求$={{1000}^{k}}+{{100}^{-k}}$
$={{({{10}^{3}})}^{k}}+{{({{10}^{2}})}^{-k}}$$={{({{10}^{k}})}^{3}}+{{({{10}^{k}})}^{-2}}$$={{3}^{3}}+{{3}^{-2}}$$=27+\displaystyle{\frac{1}{9}}$$=27\displaystyle{\frac{1}{9}}$
- 令長邊$=x$、寬$=y$$\Rightarrow $$(x+y)\cdot 2-3=33$$\Rightarrow $$2(x+y)=36$$\Rightarrow $$x+y=18$,
所求$=xy$$\Rightarrow $$\displaystyle{\frac{x+y}{2}}\ge \sqrt{xy}$$\Rightarrow $$9\ge \sqrt{xy}$$\Rightarrow $$81\ge xy$,面積最大為$81$
- $-2$與$5$之中點為$\displaystyle{\frac{3}{2}}$,距離為$7$$\Rightarrow $所求$-2\le x\le 5$之範圍即$\left| x-\displaystyle{\frac{3}{2}} \right|\le \displaystyle{\frac{7}{2}}$$\Rightarrow $$\left| -\displaystyle{\frac{2}{3}}x+1 \right|\le \displaystyle{\frac{7}{3}}$$\Rightarrow $$(-\displaystyle{\frac{2}{3}}$,$\displaystyle{\frac{7}{3}})$
- 將$m=-1$,$n=4$代入得$4-(-1)=\displaystyle{\frac{5}{2}}log\displaystyle{\frac{{{L}_{-1}}}{{{L}_{4}}}}$
$\Rightarrow $$\displaystyle{\frac{{{L}_{-1}}}{{{L}_{4}}}}={{10}^{2}}$$\Rightarrow $$100$倍
- $a={{(\sqrt{5})}^{5\sqrt{5}}}$$={{({{5}^{\frac{1}{2}}})}^{5\sqrt{5}}}$$={{5}^{\frac{5}{2}\sqrt{5}}}$,所求$=\sqrt[5]{a}$$={{({{5}^{\frac{5}{2}\sqrt{5}}})}^{\frac{1}{5}}}$$={{5}^{\frac{1}{2}\sqrt{5}}}$$\approx {{({{10}^{0.699}})}^{\frac{1}{2}\sqrt{5}}}$,又$\sqrt{5}\approx 2.23$$\Rightarrow $${{({{10}^{0.699}})}^{\frac{1}{2}\sqrt{5}}}$$\approx {{10}^{0.699\cdot \frac{1}{2}\cdot 2.23}}$$={{10}^{0.779385}}$。
又$6\approx {{10}^{0.7781}}$,$7\approx {{10}^{0.8451}}$,所求整數部分為$6$
- ${{n}^{300}}<{{7}^{800}}$$\Rightarrow $$n<{{7}^{\frac{8}{3}}}$$\approx {{({{10}^{0.8451}})}^{\frac{8}{3}}}$$={{10}^{2.2536}}$,由計算機得${{10}^{2.2536}}\approx 179.3$$\Rightarrow $$n<179.3$$\Rightarrow $$n$最大$=179$
三、填充題II(每題6分,共30分)
- 移項$\Rightarrow $${{x}^{2}}+2=2\sqrt{7}x$$\Rightarrow $${{({{x}^{2}}+2)}^{2}}={{(2\sqrt{7}x)}^{2}}$$\Rightarrow $${{x}^{2}}+4{{x}^{2}}+4=28{{x}^{2}}$$\Rightarrow $${{x}^{4}}-24{{x}^{2}}+4=0$$\Rightarrow $${{x}^{4}}-24{{x}^{2}}=-4$,所求$=-4+7=3$
- $\sqrt{{{a}^{2}}-2a+1}=\left| a-1 \right|$;$\sqrt{49-14a+{{a}^{2}}}=\left| a-7 \right|$
$\Rightarrow $原式為$\left| a-1 \right|+\left| a-7 \right|=12-\left| b-2 \right|-\left| b-4 \right|$
$\Rightarrow $$\left| a-1 \right|+\left| a-7 \right|+\left| b-2 \right|+\left| b+4 \right|=12$
又$\left| a-1 \right|+\left| a-7 \right|$之最小值$=6$、$\left| b-2 \right|+\left| b+4 \right|$之最小值$=6$
$\Rightarrow $和$=12$$\Rightarrow $$\left| a-1 \right|+\left| a+7 \right|=6$且$\left| b-2 \right|+\left| b+4 \right|=6$;
其中$1\le a\le 7$且$-4\le b\le 2$
$\Rightarrow $$1\le {{a}^{2}}\le 49$且$0\le {{b}^{2}}\le 16$
$\Rightarrow $${{a}^{2}}+{{b}^{2}}$之最大值為$49+16=65$
- $\displaystyle{\frac{1}{\sqrt{14-6\sqrt{5}}}}$$=\displaystyle{\frac{1}{\sqrt{14-2\sqrt{45}}}}$$=\displaystyle{\frac{1}{3-\sqrt{5}}}$$=\displaystyle{\frac{3+\sqrt{5}}{4}}$$=\displaystyle{\frac{5.2\cdots \cdots }{4}}$
$\Rightarrow $$a=1$,$b=\displaystyle{\frac{3+\sqrt{5}}{4}}-1$$=\displaystyle{\frac{\sqrt{5}-1}{4}}$
$\Rightarrow $$\displaystyle{\frac{1}{a+b}}+\displaystyle{\frac{1}{b}}$$=\displaystyle{\frac{1}{\displaystyle{\frac{3+\sqrt{5}}{4}}}}+\displaystyle{\frac{1}{\displaystyle{\frac{\sqrt{5}-1}{4}}}}$$=\displaystyle{\frac{4}{3+\sqrt{5}}}+\displaystyle{\frac{4}{\sqrt{5}-1}}$$=3-\sqrt{5}+\sqrt{5}+1$$=4$
- $\left| \left| x \right|-5 \right|\le \displaystyle{\frac{13}{3}}$
$\Rightarrow $$5-\displaystyle{\frac{13}{3}}\le \left| x \right|\le 5+\displaystyle{\frac{13}{3}}$
$\Rightarrow $$\left| x \right|$整數部分$=1$,$2$,$3$,……,$9$,因此$x$共$9\times 2=18$個可能
- $\left\{ \begin{array}{l}
log(\sqrt{k}+1)=a \\
log(\sqrt{k}-1)=b \\
\end{array} \right.$,其中$a=b=3$
$\Rightarrow $${{10}^{a}}=\sqrt{k}+1$,${{10}^{b}}=\sqrt{k}-1$
$\Rightarrow $${{10}^{a}}\cdot {{10}^{b}}=(\sqrt{k}+1)(\sqrt{k}-1)=k-1$
$\Rightarrow $${{10}^{a+b}}=k-1$
$\Rightarrow $${{10}^{3}}=k-1$
$\Rightarrow $$k=1001$
四、題組題(每題均需寫出演算過程或理由,否則將予扣分甚至零分。每一子題配分標於題末,共20分)
- 原式$=(a+\displaystyle{\frac{1}{b}})(2b+\displaystyle{\frac{1}{2a}})$$=2ab+\displaystyle{\frac{1}{2}}+2+\displaystyle{\frac{1}{2ab}}$$=2ab+\displaystyle{\frac{1}{2ab}}+\displaystyle{\frac{5}{2}}$
令$2ab=t>0$$\Rightarrow $$\displaystyle{\frac{t+\displaystyle{\frac{1}{t}}}{2}}\ge \sqrt{t\cdot \displaystyle{\frac{1}{t}}}=1$$\Rightarrow $$t+\displaystyle{\frac{1}{t}}\ge 2$$\Rightarrow $所求$\ge 2+\displaystyle{\frac{5}{2}}=\displaystyle{\frac{9}{2}}$
其中$2ab=\displaystyle{\frac{1}{2ab}}$$\Rightarrow $${{(2ab)}^{2}}=1$$\Rightarrow $$2ab=\pm 1$,負不合$\Rightarrow $$ab=\displaystyle{\frac{1}{2}}$
$\Rightarrow $$(1)$$\displaystyle{\frac{9}{2}}$、$(2)$$\displaystyle{\frac{1}{2}}$
- (1) ${{d}_{1}}$$=10log\displaystyle{\frac{{{10}^{-12}}}{{{10}^{-12}}}}$$=10log1=0$
(2) ${{d}_{2}}$$=10log\displaystyle{\frac{{{10}^{-3}}}{{{10}^{-12}}}}$$=10log{{10}^{9}}$$=10\cdot 9$$=90$
(3) 千支齊鳴$\Rightarrow $強度$1000$倍$\Rightarrow $$70=10log\displaystyle{\frac{{{W}_{1}}}{{{10}^{-12}}}}$$\Rightarrow $${{W}_{1}}={{10}^{-5}}$
$1000$倍$\Rightarrow $$1000{{W}_{1}}={{10}^{-2}}$$\Rightarrow $${{d}_{3}}=10log\displaystyle{\frac{{{10}^{-2}}}{{{10}^{-12}}}}$$=10log{{10}^{10}}=100$
沒有留言:
張貼留言