2018年12月29日 星期六

62年大學聯考數學科試題(自)詳解

一、多重選擇題(占60分)

  1. 令$z=cos\ \theta +\ i\ sin\ \theta $
    $\Rightarrow R+\ i\ S\ =\ \sum\limits_{k=1}^{2\ n}{{{z}^{k}}}=\displaystyle{\frac{1-{{z}^{2n}}}{1-z}}=\displaystyle{\frac{1-(cos\ 2\pi +i\ sin\ 2\pi )}{1-\left( cos\displaystyle{\frac{\pi }{n}}+i\ sin\displaystyle{\frac{\pi }{n}} \right)}}=0$
    $\Rightarrow R=S=0$,故選(A)(E)

  2. $(1+x)y=x$$\Rightarrow $$xy-x+y=0$
    $\Rightarrow $$x(y-1)+1\cdot (y-1)=-1$
    $\Rightarrow $$(x+1)(y-1)=-1$為一雙曲線,其漸近線為$x+1=0$與$y-1=0$,則中心為$(-1,1)$
    故選(A)(B)(D)

  3. $RS=\left[ \begin{matrix} 1 & 3 & 1 \\ 0 & -2 & 1 \\ 1 & 0 & 2 \\ \end{matrix} \right]\left[ \begin{matrix} -4 & x & 5 \\ 1 & 1 & -1 \\ 2 & 3 & -2 \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]$
    $\Rightarrow $$x=-6$
    因$RS=I$$\Rightarrow $$R={{S}^{-1}}$
    $\Rightarrow $$SR=I=RS$
    $\Rightarrow $${{R}^{2}}{{S}^{2}}=RRSS=RIS=RS=I$
    故選(B)(D)(E)

  4. ${{n}^{4}}<{{10}^{6}}<{{(n+1)}^{4}}$ $\Rightarrow $ ${{n}^{2}}<{{10}^{3}}<{{(n+1)}^{2}}$ $\Rightarrow $ $n=31$、$32$、$33$、...,故選(D)(E)

  5. $P={{\left( \displaystyle{\frac{1}{2}} \right)}^{5}}=\displaystyle{\frac{1}{32}}$$\Rightarrow $$E=\displaystyle{\frac{1}{32}}\cdot 5+\left( 1-\displaystyle{\frac{1}{32}} \right)\cdot S=0$$\Rightarrow $$S=\displaystyle{\frac{5}{31}}\approx 0.161$,故選(B)(E)

  6. (A)  $sin\displaystyle{\frac{\pi }{4}}=cos\displaystyle{\frac{\pi }{4}}=\displaystyle{\frac{\sqrt{2}}{2}}$
    (B)  $sin\displaystyle{\frac{\pi }{8}}=+\sqrt{\displaystyle{\frac{1-cos\displaystyle{\frac{\pi }{4}}}{2}}}=\displaystyle{\frac{\sqrt{2-\sqrt{2}}}{2}}$
    (C)  $cos\displaystyle{\frac{\pi }{8}}=+\sqrt{\displaystyle{\frac{1+cos\displaystyle{\frac{\pi }{4}}}{2}}}=\sqrt{\displaystyle{\frac{2+\sqrt{2}}{2}}}$
    (D)  $sin\displaystyle{\frac{\pi }{16}}=\sqrt{\displaystyle{\frac{1-cos\displaystyle{\frac{\pi }{8}}}{2}}}=\sqrt{\displaystyle{\frac{2-\sqrt{2+\sqrt{2}}}{2}}}$
    (E)  $cos\displaystyle{\frac{\pi }{16}}=+\sqrt{\displaystyle{\frac{1+cos\displaystyle{\frac{\pi }{8}}}{2}}}=\sqrt{\displaystyle{\frac{2+\sqrt{2+\sqrt{2}}}{2}}}$
    故選(A)(B)(C)(D)(E)

  7. 若${{a}_{n}}<2$$\Rightarrow $${{a}_{n+1}}=\sqrt{2+{{a}_{n}}}<\sqrt{2+2}=2$
    ${{a}_{n+1}}-{{a}_{n}}=\sqrt{{{a}_{n}}+2}-{{a}_{n}}=\displaystyle{\frac{{{a}_{n}}+a-{{a}_{n}}^{2}}{\sqrt{{{a}_{n}}+2}+{{a}_{n}}}}=\displaystyle{\frac{-({{a}_{n}}+1)({{a}_{n}}-2)}{\sqrt{{{a}_{n+2}}}+{{a}_{n}}}}>0$
    $\Rightarrow $$\left\langle {{a}_{n}} \right\rangle $遞增有界$\Rightarrow $$\underset{n\to \infty }{\mathop{lim}}\,{{a}_{n}}$存在,令$\underset{n\to \infty }{\mathop{lim}}\,{{a}_{n}}=L$,則$L=\sqrt{L+2}$$\Rightarrow $$L=2$
    ${{b}_{n}}-{{b}_{n+1}}=\sqrt{2-{{a}_{n-1}}}-\sqrt{2-{{a}_{n}}}=\displaystyle{\frac{-{{a}_{n-1}}+{{a}_{n}}}{\sqrt{2-{{a}_{n-1}}}+\sqrt{2-{{a}_{n}}}}}>0$
    $\Rightarrow $${{b}_{n}}$遞減
    $2cos\displaystyle{\frac{\pi }{{{2}^{n}}}}=\sqrt{2+2cos\displaystyle{\frac{\pi }{{{2}^{n-1}}}}}$$\Rightarrow $可令$2cos\displaystyle{\frac{\pi }{{{2}^{n}}}}={{a}_{n}}$且與上述${{a}_{n}}$相符
    $\Rightarrow $$\underset{n\to \infty }{\mathop{lim}}\,cos\displaystyle{\frac{\pi }{{{2}^{n}}}}=\underset{n\to \infty }{\mathop{lim}}\,\displaystyle{\frac{{{a}_{n}}}{2}}=\displaystyle{\frac{2}{2}}=1$
    故選(A)(B)(D)(E)

  8. (A)  正確
    (B)  錯誤,$g$在$(\displaystyle{\frac{-\pi }{2}}$,$\displaystyle{\frac{\pi }{2}})$上的反函數是$f$
    (C)  錯誤,$g$在$\{x|x=\displaystyle{\frac{\pi }{2}}+k\pi,k\in$整數$\}$上沒有定義。
    (D)  正確
    (E)  錯誤,$f(g(x))=x+k\pi,k\in$整數,其中$x+k\pi\in(\displaystyle{\frac{-\pi }{2}}$,$\displaystyle{\frac{\pi }{2}})$,故選(A)(D)

  9. 將$x=1$、$x=-2$、$y=0$、$y=3$、$xy+1=y$、$y=3-x^2$解交點座標並在坐標平面上作圖得
    其中$A(-2$,$3)$、$B(0$,$3)$、$C(\displaystyle{\frac{\sqrt{5}-1}{2}}$,$\displaystyle{\frac{3+\sqrt{5}}{2}})$、$D(1$,$3)$、$E(-2$,$0)$、$(\displaystyle{\frac{-1-\sqrt{5}}{2}}$,$\displaystyle{\frac{3-\sqrt{5}}{2}})$、$G(1$,$0)$、$H(2$,$-1)$
    分別取交集得到以下圖形:
    $P$:



    $Q$:



    $R$:



    $S$:



    $T$:



    $U$:



    $V=R\cap P$:

    故(A)錯誤、(B)(C)(D)正確,又因$V$都在$Q$內部,故面積$<9$,(E)正確。
    故選(B)(C)(D)(E)

  10. $\theta =lo{{g}_{\frac{3}{2}}}4=\displaystyle{\frac{log\ 4}{log\ \displaystyle{\frac{3}{2}}}}=\displaystyle{\frac{log\ 4}{log\ 3-log\ 2}} \doteqdot \displaystyle{\frac{0.6020}{0.4771-0.3010}}\doteqdot 3.42$,故選(D)(E)

  11. $\overline{OP}=\sqrt{5}<3$;$P$恰過直線$y-2=m(x+1)$,且$\overline{OP}$斜率為$-2$$\Rightarrow $$m=\displaystyle{\frac{1}{2}}$,故選(B)(C)

  12. $S$:$\left[ \ (\ x\ +\ y\ )\ +\ 1\ \right]\left[ \ (\ x\ +\ y\ )\ +\ 3\ \right]\le 0$$\Rightarrow $兩平行線間
    $T$:${{\left( x+1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}\le 1$$\Rightarrow $圓內
    $\Rightarrow $$R=S\cap T$如圖:

    故$R$面積為「圓面積」$-$「$2\times \text{(}\displaystyle{\frac{1}{4}}\text{弓形)}$」$=\pi -2\cdot \left(\displaystyle{\frac{1}{4}}\pi -\displaystyle{\frac{1}{2}} \right)= \displaystyle{\frac{\pi }{2}}+1\doteqdot 2.57$,故選(E)

  13. 由行列式得${{\left( x-cos\ \theta \right)}^{2}}+si{{n}^{2}}\theta =0$$\Rightarrow $${{x}^{2}}-2\cdot cos\ \theta \ x+1=0$$\Rightarrow $可令
    $\left\{ \begin{aligned}
    & \alpha =cos\ \theta +i\ sin\ \theta \\
    & \beta =cos\ \theta -i\ sin\ \theta =\bar{\alpha } \\
    \end{aligned} \right.$$\Rightarrow $${{\alpha }^{n}}+{{\beta }^{n}}={{\alpha }^{n}}+{{\left( {\bar{\alpha }} \right)}^{n}}=2\ cos\ n\theta $,故選(D)

  14. 由$log\ {{g}_{n}}<log\ {{10}^{-3}}$$\Rightarrow $ $log\ {{g}_{n}}<-3$$\Rightarrow $ $log\ 400+n\left( log\ 3-log\ 4 \right)<-3$ $\Rightarrow $$2.602+n\left( 0.4771-0.602 \right)<-3$ $\Rightarrow $ $n>44.85$,故選(A)

  15. 作$(0$,$1)$對於$x$軸的對稱點得到$(0$,$-1)$,如圖:

    再由中垂線性質可知:$(4$,$5)$到$(0$,$-1)$之距離即「$(0$,$1)$到$(x$,$0)$之距離$+$$(x$,$0)$到$(4$,$5)$之距離」,又因三角不等式,可得該最小距離為$(0$,$-1)$與$(4$,$5)$距離$\Rightarrow $$(0$,$-1)$與$(4$,$5)$之直線方程式為$3x-2y=2$,與$x$軸交於$\left( \displaystyle{\frac{2}{3}},0 \right)$$\Rightarrow $$x=\displaystyle{\frac{2}{3}}$,故選(C)

  16. 令$\displaystyle{\frac{3x+1}{x-3}}=t$ $\Rightarrow $ $t+5\cdot \displaystyle{\frac{1}{t}}-6=0$ $\Rightarrow $ ${{t}^{2}}-6t+5=0$ $\Rightarrow $0$\left( t-1 \right)\left( t-5 \right)=0$ $\Rightarrow $ $t=1,5$ $\Rightarrow $ $\displaystyle{\frac{3x+1}{x-3}}=1$,$5$ $\Rightarrow $ $x=-2$,$8$ $\Rightarrow $ $x$的解集合為$\{-2$,$8\}$
    故選(B)

  17. 令$x=\sqrt{2}+i\sqrt{3}$ $\Rightarrow $ $x-\sqrt{2}=i\sqrt{3}$ $\Rightarrow $ ${{x}^{2}}-2\sqrt{2}x+2=-3$ $\Rightarrow $ ${{x}^{2}}+5=2\sqrt{2}x$ $\Rightarrow $ ${{x}^{4}}+10{{x}^{2}}+25=8{{x}^{2}}$ $\Rightarrow $ ${{x}^{4}}+2{{x}^{2}}+25=0$ $\Rightarrow $ 選(B)

  18. $\left( 7-2 \right)\times 180{}^\circ =900{}^\circ $,故選(D)

  19. $xy$的$n$次式必以${{x}^{a}}{{y}^{b}}$項組成,其中$0\le a+b\le n$ $\Rightarrow $ $0\le a+b\le n$的非負整數解為$H_{n}^{3}=C_{n}^{n+2}=C_{2}^{n+2}=\displaystyle{\frac{\left( n+1 \right)\left( n+2 \right)}{2}}$,故選(E)

  20. 化簡$\sqrt{1+sin\ \alpha }-\sqrt{1-sin\ \alpha }$ $=\sqrt{co{{s}^{2}}\displaystyle{\frac{\alpha }{2}}+2\cdot sin\displaystyle{\frac{\alpha }{2}}\cdot cos\displaystyle{\frac{\alpha }{2}}+si{{n}^{2}}\displaystyle{\frac{\alpha }{2}}}-\sqrt{co{{s}^{2}}\displaystyle{\frac{\alpha }{2}}-2\cdot sin\displaystyle{\frac{\alpha }{2}}\cdot cos\displaystyle{\frac{\alpha }{2}}+si{{n}^{2}}\displaystyle{\frac{\alpha }{2}}}$ $=\sqrt{{{\left( cos\displaystyle{\frac{\alpha }{2}}+sin\displaystyle{\frac{\alpha }{2}} \right)}^{2}}}-\sqrt{{{\left( cos\displaystyle{\frac{\alpha }{2}}-sin\displaystyle{\frac{\alpha }{2}} \right)}^{2}}}$ $=\left| cos\displaystyle{\frac{\alpha }{2}}+sin\displaystyle{\frac{\alpha }{2}} \right|-\left| cos\displaystyle{\frac{\alpha }{2}}-sin\displaystyle{\frac{\alpha }{2}} \right|$
    因$0<\alpha <\displaystyle{\frac{\pi }{2}}$ $\Rightarrow $ $0<\alpha <\displaystyle{\frac{\pi }{4}}$ $\Rightarrow $ $cos\displaystyle{\frac{\pi }{4}}>sin\displaystyle{\frac{\pi }{4}}>0$ $\Rightarrow $ $\left| cos\displaystyle{\frac{\alpha }{2}}+sin\displaystyle{\frac{\alpha }{2}} \right|-\left| cos\displaystyle{\frac{\alpha }{2}}-sin\displaystyle{\frac{\alpha }{2}} \right|$ $=\left( cos\displaystyle{\frac{\alpha }{2}}+sin\displaystyle{\frac{\alpha }{2}} \right)-\left( cos\displaystyle{\frac{\alpha }{2}}-sin\displaystyle{\frac{\alpha }{2}} \right)$ $=2sin\displaystyle{\frac{\alpha }{2}}$,故選(A)

  21. 在平面上作$x=2$、$x=5$、$x+y=8$、$x+3y=5$的圖形,並將$2\le x\le 5$、$x+y\le 8$、$x+3y\le 5$取交集得到下圖,其中出現四個交點$\left( 2,6 \right)$、$\left( 2,1 \right)$、$\left( 5,3 \right)$、$\left( 5,0 \right)$

    由頂點法可得:將$\left( 5,3 \right)$代入會有極大值$16$,故選(D)

  22. 由$t=cos\ 2\theta =co{{s}^{2}}\theta -si{{n}^{2}}\theta $得$4\left( co{{s}^{6}}\theta -si{{n}^{6}}\theta \right)$ $=4\left( co{{s}^{2}}\theta -si{{n}^{2}}\theta \right)\left( co{{s}^{4}}\theta +co{{s}^{2}}\theta \cdot si{{n}^{2}}\theta +si{{n}^{4}}\theta \right)$ $=4t\left[ {{\left( co{{s}^{2}}\theta +si{{n}^{2}}\theta \right)}^{2}}-co{{s}^{2}}\theta \cdot si{{n}^{2}}\theta \right]$ $=4t\left( {{1}^{2}}-\displaystyle{\frac{1}{4}}\cdot 4\cdot co{{s}^{2}}\theta \cdot si{{n}^{2}}\theta \right)$ $=4t\left[ 1-\displaystyle{\frac{1}{4}}{{\left( sin\ 2\theta \right)}^{2}} \right]$ $=4t\left[ 1-\displaystyle{\frac{1}{4}}\left( 1-co{{s}^{2}}2\theta \right) \right]$ $=4t-t+{{t}^{3}}$ $={{t}^{3}}+3t$,故選(A)

1 則留言: