108上第1次段考-台中-曉明女中-高一(詳解)
範圍:第一冊 龍騰單元4~單元7
(※索取各種題目檔案請來信索取。)
一、單一選擇題:(每題5分,共10分)
- $(-3$,$-2)$與圓$C$圓心$(6$,$7)$距$=\sqrt{{{[6-(-3)]}^{2}}+{{[7-(-2)]}^{2}}}$$=\sqrt{182}$$=13.\cdots \cdots $$\Rightarrow $$(-3$,$-2)$到圓最近$=\sqrt{182}-r$,最遠$=\sqrt{182}+r$$\Rightarrow $$9.\cdots \cdots <$距離$<17.\cdots \cdots $,整數$\Rightarrow $$10\sim17$,共8種,兩側皆有$\Rightarrow $$8\times 2=16$,選(5)
- $a={{10}^{21}}$,$b={{10}^{22}}$,$c={{10}^{23}}$$\Rightarrow $$log(a+b+c)$$=log[{{10}^{21}}(1+10+100)]$$=log{{10}^{23}}\times 1.21\approx 23$,選(3)
二、多重選擇題:(每題7分,錯一選項得4分,錯兩選項得2分,共28分)
- ${{m}_{{{L}_{1}}}}>0$$\Rightarrow $$a>0$,${{m}_{{{L}_{2}}}}$、${{m}_{{{L}_{3}}}}<0$$\Rightarrow $$c<0$,$e<0$,${{L}_{1}}$之$y$截距$<0$$\Rightarrow $$b<0$,${{L}_{2}}$過原點$\Rightarrow $$d=0$,${{L}_{3}}$之$y$截距$=f$$\Rightarrow $$f>0$$\Rightarrow $(1)正確,(2)(3)錯誤。又${{m}_{{{L}_{1}}}}<1$、${{m}_{{{L}_{2}}}}<-1$$\Rightarrow $$\left| c \right|>\left| a \right|$。又${{m}_{{{L}_{2}}}}<{{m}_{{{L}_{3}}}}<-1$$\Rightarrow $最小,(5)正確,故選(1)(5)
- (1) $(7$,$-8)$、$(1$,$2)$皆過$5x+3y=11$,且$(13$,$-18)$亦過$5x+3y=11$$\Rightarrow $三點共線,無法作圓,不選。
(2) 經配方,${{(x+2)}^{2}}+{{(y-4)}^{2}}=-60$,無圖形,不選。
(3) 作圖觀察知有兩圓。
(4) 令$P(x$,$y)$$\Rightarrow $$2\overline{PA}=3\overline{PB}$知$2\sqrt{{{(x+3)}^{2}}+{{(y-7)}^{2}}}=3\sqrt{{{(x-2)}^{2}}+{{(y-5)}^{2}}}$$\Rightarrow $$4{{x}^{2}}+24x+36+4{{y}^{2}}-28y+441=9{{x}^{2}}-36x+36+9{{y}^{2}}-90y+225$$\Rightarrow $$5{{x}^{2}}+5{{y}^{2}}-60x-62y-216=0$$\Rightarrow {{x}^{2}}+{{y}^{2}}-12x-\displaystyle{\frac{62}{5}}y-\displaystyle{\frac{216}{5}}=0$$\Rightarrow {{(x-6)}^{2}}+{{(y-\displaystyle{\frac{31}{5}})}^{2}}=\displaystyle{\frac{21}{5}}+36+\displaystyle{\frac{901}{25}}$$\Rightarrow $圓
(5) $y-2=\sqrt{9-{{x}^{2}}}$$\Rightarrow $${{(y-2)}^{2}}=9-{{x}^{2}}$$\Rightarrow $${{x}^{2}}+{{(y-2)}^{2}}=9$$\Rightarrow $又$y-2>0$$\Rightarrow $上半圓
- 作不等式範圍並解出交點如下,
(1) 正確
(2) 面積$\displaystyle{\frac{1}{2}}\cdot 4\cdot 4=8$,正確
(3) $y=-1$$\Rightarrow $$\left\{ \begin{array}{l}
2x-(-1)+1\ge 0 \\
2x+(-1)-5\le 0 \\
\end{array} \right.$$\Rightarrow $$3\ge x\ge -1$$\Rightarrow $$x=-1$,$0$,$1$,$2$,$3$
$y=0$$\Rightarrow $$\left\{ \begin{array}{l}
2x+1\ge 0 \\
2x-5\le 0 \\
\end{array} \right.$$\Rightarrow $$\displaystyle{\frac{5}{2}}\ge x\ge -\displaystyle{\frac{1}{2}}$$\Rightarrow $$x=0$,$1$,$2$
$y=1$$\Rightarrow $$\left\{ \begin{array}{l}
2x-1+1\ge 0 \\
2x+1-5\le 0 \\
\end{array} \right.$$\Rightarrow $$2\ge x\ge 0$$\Rightarrow $$x=0$,$1$,$2$
$y=2$$\Rightarrow $$\left\{ \begin{array}{l}
2x-2+1\ge 0 \\
2x+2-5\le 0 \\
\end{array} \right.$$\Rightarrow $$\displaystyle{\frac{3}{2}}\ge x\ge \displaystyle{\frac{1}{2}}$$\Rightarrow $$x=1$
$y=3$$\Rightarrow $$\left\{ \begin{array}{l}
2x-3+1\ge 0 \\
2x+3-5\le 0 \\
\end{array} \right.$$\Rightarrow $$1\ge x\ge 1$$\Rightarrow $$x=1$
$\Rightarrow $共$5+3+3+1+1=13$個
(4) ${{(x-3)}^{2}}+{{(y-2)}^{2}}$即$(x$,$y)$到$(3$,$2)$之距離平方,即$(3$,$2)$到$2x+y-5=0$之距離平方$={{(\displaystyle{\frac{\left| 6+2-5 \right|}{\sqrt{5}}})}^{2}}=\displaystyle{\frac{9}{5}}$
(5) 即$(x$,$y)$到$(4$,$2)$之斜率最大,即$(4$,$2)$到頂點$(3$,$-1)$之斜率$=\displaystyle{\frac{2-(-1)}{4-1}}=\displaystyle{\frac{3}{3}}=1$
- (1) $1.253\times {{10}^{845}}$與$1.254\times {{10}^{845}}$皆為$846$位數$\Rightarrow $${{7}^{1000}}$為$846$位數,故(1)不選
(2) ${{49}^{50}}={{7}^{100}}$$\Rightarrow $${{(1.253\times {{10}^{845}})}^{\frac{1}{10}}}<{{7}^{100}}<{{(1.254\times {{10}^{845}})}^{\frac{1}{10}}}$$\Rightarrow $$1.\cdots \cdots \times {{10}^{84.5}}<{{7}^{100}}<1.\cdots \cdots \times {{10}^{84.5}}$$\Rightarrow $${{7}^{100}}$為$85$位數
(3) ${{(1.253\times {{10}^{845}})}^{\frac{1}{1000}}}<7<{{(1.254\times {{10}^{845}})}^{\frac{1}{1000}}}$$\Rightarrow $$1.\cdots \cdots \times {{10}^{0.845}}<7<1.\cdots \cdots \times {{10}^{0.845}}$$\Rightarrow $$0.845<log7<0.846$$\Rightarrow $${{(1.253\times {{10}^{845}})}^{-1}}>{{7}^{-1000}}>{{(1.254\times {{10}^{845}})}^{-1}}$$\Rightarrow $$\displaystyle{\frac{1}{1.253}}\times {{10}^{-845}}>{{7}^{-1000}}>\displaystyle{\frac{1}{1.254}}\times {{10}^{-845}}$$\Rightarrow $$0.8\cdots \times {{10}^{-845}}<{{7}^{-1000}}<0.8\cdots \times {{10}^{-845}}$$\Rightarrow $$8\times {{10}^{-846}}<{{7}^{-1000}}<9\times {{10}^{-846}}$$\Rightarrow $$846$位數
(5) ${{49}^{-100}}={{7}^{-200}}$$\Rightarrow $${{(1.253\times {{10}^{845}})}^{-\frac{1}{5}}}>{{7}^{-200}}>{{(1.254\times {{10}^{845}})}^{-\frac{1}{5}}}$$\Rightarrow $$1.\cdots \cdots \times {{10}^{-169}}>{{7}^{-200}}>1.\cdots \cdots \times {{10}^{-169}}$$\Rightarrow $小數點以下$169$位始不為$0$$\Rightarrow $小數點以下有$168$個$0$
三、填充題:全對才給分(共62分)
- $(\displaystyle{\frac{{{3}^{3}}}{{{2}^{3}}}})\times {{({{3}^{2}})}^{\frac{3}{2}}}\times {{(\displaystyle{\frac{{{3}^{4}}}{{{2}^{4}}}})}^{-\frac{1}{2}}}$$={{3}^{\frac{3}{4}}}\times {{2}^{-\frac{3}{4}}}\times {{3}^{3}}\times {{3}^{-2}}\times {{2}^{2}}$$={{2}^{\frac{5}{4}}}\times {{3}^{\frac{7}{4}}}$$\Rightarrow $$-\displaystyle{\frac{5}{4}}+\displaystyle{\frac{7}{4}}=\displaystyle{\frac{1}{2}}$
- $\displaystyle{\frac{({{a}^{x}}+{{a}^{-x}})({{a}^{2x}}-1+{{a}^{-2x}})}{{{a}^{x}}+{{a}^{-x}}}}=9$$\Rightarrow $${{a}^{2x}}+{{a}^{-2x}}-10=0$,令${{a}^{2x}}=t$$\Rightarrow $$t+\displaystyle{\frac{1}{t}}-10=0$$\Rightarrow $${{t}^{2}}-10t+1=0$$\Rightarrow $$t=\displaystyle{\frac{10\pm \sqrt{96}}{2}}=5\pm 2\sqrt{6}$
- $x={{10}^{-1.0899}}$、$123000={{10}^{5.0899}}$$\Rightarrow $$123000x={{10}^{4}}$$\Rightarrow $$12.3x=1$$\Rightarrow $$1\div 12.3\approx 0.081\cdots \approx 0.08$
- 不能圍成三角形$\Rightarrow $三點共線、兩線平行。因${{L}_{1}}$、${{L}_{2}}$不平行$\Rightarrow $有「${{L}_{1}}$ $/\kern -0.8em /$ ${{L}_{2}}$」、「${{L}_{2}}$ $/\kern -0.8em /$ ${{L}_{3}}$」、「三線共點」。${{L}_{1}}$ $/\kern -0.8em /$ ${{L}_{3}}$則$\displaystyle{\frac{2}{a}}=\displaystyle{\frac{3}{1}}$$\Rightarrow $$a=\displaystyle{\frac{2}{3}}$;${{L}_{2}}$ $/\kern -0.8em /$ ${{L}_{3}}$則$\displaystyle{\frac{1}{a}}=\displaystyle{\frac{-4}{1}}$$\Rightarrow $$a=-\displaystyle{\frac{1}{4}}$;三線共點則解${{L}_{1}}$、${{L}_{2}}$交點得$(x$,$y=(\displaystyle{\frac{25}{11}}$,$\displaystyle{\frac{-2}{11}})$$\Rightarrow $$\frac{25}{11})a+\displaystyle{\frac{-2}{11}}=1$$\Rightarrow $$a=\displaystyle{\frac{13}{25}}$
- 配方$\Rightarrow $${{(x+1)}^{2}}+{{(y-3)}^{2}}=-3k-3$$\Rightarrow $$-3k-3>0$$\Rightarrow $$k<-1$且$(-1$,$2)$代入$>0$$\Rightarrow $$1+4-2-12+3k+13>0$$\Rightarrow $$k>-\displaystyle{\frac{4}{3}}$。過$(8$,$4)$且與$x$軸,$y$軸相切
- 圓心必為$(t$,$t)$,半徑為$\left| t \right|$$\Rightarrow $${{(x-t)}^{2}}+{{(y-t)}^{2}}={{t}^{2}}$$\Rightarrow $${{(8-t)}^{2}}+{{(4-t)}^{2}}={{t}^{2}}$$\Rightarrow $${{t}^{2}}-24t+80=0$$\Rightarrow $$t=4$或$20$$\Rightarrow $方程式為${{(x-4)}^{2}}+{{(y-4)}^{2}}=16$或${{(x-20)}^{2}}+{{(y-4)}^{2}}=400$
- 令$P(a$,$b)$$\Rightarrow $$Q(2a$,$2b-5)$,又$Q$在$C$上$\Rightarrow $${{(2a-5)}^{2}}+{{(2b-5-3)}^{2}}=36$$\Rightarrow $${{(a+2)}^{2}}+{{(b-4)}^{2}}=9$$\Rightarrow $${{(x+2)}^{2}}+{{(y-4)}^{2}}=9$
- 因$SR$過$(3$,$0)$且$C$在$\overline{SR}$上$\Rightarrow $$SR$方程式為$x-3y=3$又$\overline{QR}\bot \overline{SR}$$\Rightarrow $$\overline{QR}$為$3x+y=6$,$\overline{PQ}$ $/\kern -0.8em /$ $\overline{SR}$且過$A$點$\Rightarrow $$\overline{PQ}$為$x-3y=-9$;$\overline{SP}$ $/\kern -0.8em /$ $\overline{QR}$且過$D$點$\Rightarrow $$\overline{SP}$為$3x+y=-12$$\Rightarrow $兩組對邊長為$\displaystyle{\frac{18}{\sqrt{10}}}$、$\displaystyle{\frac{\sqrt{12}}{10}}$$\Rightarrow $對角線長$=\sqrt{{{(\displaystyle{\frac{18}{\sqrt{10}}})}^{2}}+{{(\displaystyle{\frac{12}{\sqrt{10}}})}^{2}}}=\displaystyle{\frac{3}{5}}\sqrt{130}$
- 將${{x}^{2}}+{{y}^{2}}-4y+1=0$配方$\Rightarrow $${{x}^{2}}+{{(y-2)}^{2}}=3$,所求$=$「${{x}^{2}}+{{y}^{2}}\ge 0$且${{x}^{2}}+{{(y-2)}^{2}}\le 3$」,或「${{x}^{2}}+{{y}^{2}}\le 0$且${{x}^{2}}+{{(y-2)}^{2}}\ge 3$」,即在「${{x}^{2}}+{{y}^{2}}=1$外部與${{x}^{2}}+{{(y-2)}^{2}}=3$內部」或「${{x}^{2}}+{{y}^{2}}=1$內部與${{x}^{2}}+{{(y-2)}^{2}}=3$外部」$\Rightarrow $作圖如下,所求為塗色範圍,長度標示如圖,中間空白部分$=$「左弓形」$+$「右弓形」
左弓形$={{\sqrt{3}}^{2}}\pi \cdot \displaystyle{\frac{1}{6}}-\displaystyle{\frac{\sqrt{3}}{4}}\cdot {{\sqrt{3}}^{2}}=\displaystyle{\frac{\pi }{2}}-\displaystyle{\frac{3}{4}}\sqrt{3}$;右弓形$={{1}^{2}}\pi \cdot \displaystyle{\frac{1}{3}}-\displaystyle{\frac{\sqrt{3}}{4}}\cdot {{1}^{2}}=\displaystyle{\frac{\pi }{3}}-\displaystyle{\frac{\sqrt{3}}{4}}$,空白部分$=\displaystyle{\frac{5}{6}}\pi -\sqrt{3}$$\Rightarrow $塗色$=$兩圓面積和$-2\times $「空白部分」$=3\pi +\pi -2\cdot (\displaystyle{\frac{5}{6}}\pi -\sqrt{3})$$=\displaystyle{\frac{7}{3}}\pi +2\sqrt{3}$
- ${{C}_{1}}$圓心$(-3$,$3)$、半徑$2$;${{C}_{2}}$圓心$(2$,$9)$、半徑$3$,作圖如下,作另一圓${{C}_{3}}$圓心$(-3$,$-3)$、半徑$2$。
${{C}_{3}}$即為${{C}_{1}}$對$x$軸的對稱圓。所求最小值即為${{C}_{2}}$上任意一點到${{C}_{3}}$上任意一點最小的距離,即$\overline{{{C}_{2}}{{C}_{3}}}-({{r}_{2}}+{{r}_{3}})=13-5=8$
- $9$年衰變為$\displaystyle{\frac{16}{128}}=\displaystyle{\frac{1}{8}}$倍$\Rightarrow $半衰期$=9\cdot \displaystyle{\frac{1}{3}}=3$(年)
- $7.6=\displaystyle{\frac{log(\displaystyle{\frac{{{E}_{1}}}{A}})}{log32}}$,$9.1=\displaystyle{\frac{log(\displaystyle{\frac{{{E}_{2}}}{A}})}{log32}}$$\Rightarrow $${{E}_{1}}$為墨西哥地震的能量、${{E}_{2}}$為蘇門答臘地震的能量$\Rightarrow $$\left\{ \begin{array}{l}
7.6\cdot log32=log{{E}_{1}}-logA \\
9.1\cdot log32=log{{E}_{2}}-logA \\
\end{array} \right.$、兩式相減$\Rightarrow $$1.5log32=log\displaystyle{\frac{{{E}_{2}}}{{{E}_{1}}}}$$\Rightarrow $$log{{({{2}^{5}})}^{\frac{3}{2}}}=log\displaystyle{\frac{{{E}_{2}}}{{{E}_{1}}}}$$\Rightarrow $$\displaystyle{\frac{{{E}_{2}}}{{{E}_{1}}}}={{2}^{\frac{15}{2}}}=128\sqrt{2}$
沒有留言:
張貼留言