2020年12月13日 星期日

[段考] 108上第3次段考-台北-北一女中-高一(詳解)

108上第3次段考-台北-北一女中-高一(詳解)


範圍: 第一冊

 (※索取各種題目檔案請來信索取。)

一、多選題

  1. 因$f(2)=f(6)=1$$\Rightarrow$$f(x)=a(x-2)(x-6)+1$,又$f(-1)=0$$\Rightarrow$$21a+1=0$$\Rightarrow$$a=-\displaystyle{\frac{1}{21}}$$\Rightarrow$$f(x)=-\displaystyle{\frac{1}{21}}(x-2)(x-6)+1=-\displaystyle{\frac{1}{21}}{{x}^{2}}+\displaystyle{\frac{8}{21}}x+\displaystyle{\frac{3}{7}}$$=-\displaystyle{\frac{1}{21}}({{x}^{2}}-8x+16)+\displaystyle{\frac{25}{21}}$$=-\displaystyle{\frac{1}{21}}{{(x-4)}^{2}}+\displaystyle{\frac{25}{21}}$,
    (1)  當$x=4$時有最大值$\displaystyle{\frac{25}{21}}$
    (2)  $f(1)=-\displaystyle{\frac{1}{21}}\cdot 9+\displaystyle{\frac{25}{21}}=\displaystyle{\frac{16}{21}}$
    (3)  $f(9)=-\displaystyle{\frac{1}{21}}\cdot 25+\displaystyle{\frac{25}{21}}=0$
    (4)  由$f(x)=-\displaystyle{\frac{1}{21}}(x-2)(x-6)+1$,正確
    (5)  $f(-1)=0$,非$1$,不選。
    故選(2)(3)(4)

  2. (1)應將原式的$2$次改為$1$次才會對,(2)即函數的平移,正確。$f(x)=(x-3+1)[{{(x-3)}^{2}}+2(x-3)-2]$$=(x-2)({{x}^{2}}-4x+1)$,共三個交點,(3)錯誤、(4)(5)正確,故選(2)(4)(5)

  3. $f(x)=(x-1)({{x}^{2}}+2)q(x)+a{{x}^{2}}+bx+c$,其中$R(x)=a{{x}^{2}}+bx+c$被$({{x}^{2}}+2)$除後得$a({{x}^{2}}+2)+bx-2a+c$,其中$b=1$、$-2a+c=-3$,且$f(1)=R(1)$。
    (1)  可能$a=0$
    (2)  $b=1$,至少為$1$次式
    (3)  正確
    (4)  正確
    (5)  $f(1)=1$$\Rightarrow$$a+b+c=1$,又$b=1$、$-2a+c=-3$$\Rightarrow$$a=1$、$c=-1$$\Rightarrow$$R(x)=({{x}^{2}}+2)+(x-3)$
    故選(3)(4)

二、填充題

  1. 營收與$x$成正比$\Rightarrow$令營收$=mx$$\Rightarrow$$y=mx-$成本,當成本$=b$、$x=a$則$y=0$$\Rightarrow$$0=am-b$$\Rightarrow$$m=\displaystyle{\frac{b}{a}}$$\Rightarrow$$y=\displaystyle{\frac{b}{a}}x-b$$\Rightarrow$選(1)

  2. $f(\displaystyle{\frac{1}{2}})=7$,$f(-2)=2$,令餘式為$ax+b$$\Rightarrow$$f(x)=(2x-1)(x+2)q(x)+ax+b$$\Rightarrow$$\displaystyle{\frac{1}{2}}a+b=7$,$-2a+b=2$$\Rightarrow$$a=2$、$b=6$$\Rightarrow$$2x+6$

  3. $(x+1)(x-1)(x-1)({{x}^{2}}+x+1)(x-1)(x+1)({{x}^{2}}+1)<0$$\Rightarrow$${{(x-1)}^{3}}{{(x+1)}^{2}}({{x}^{2}}+x+1)({{x}^{2}}+1)<0$$\Rightarrow$$-1<x<1$或$x<-1$


  4. $\Rightarrow$$5$公尺

  5. $f(x)=g(x){{q}_{1}}(x)+x-2$$\Rightarrow$$x\cdot f(x)=g(x)\cdot x{{q}_{1}}(x)+{{x}^{2}}-2x$,其中${{x}^{2}}-2x$被$g(x)$除餘$x-2$$\Rightarrow$$g(x)$為${{x}^{2}}-3x+2$之因式且$g(x)$為二次以上、領導係數為$1$$\Rightarrow$$g(x)={{x}^{2}}-3x+2$

  6. $18.5\le \displaystyle{\frac{50}{{{H}^{2}}}}<24$
    $\Rightarrow$$\displaystyle{\frac{2}{37}}\ge \displaystyle{\frac{{{H}^{2}}}{50}}>\displaystyle{\frac{1}{24}}$
    $\Rightarrow$$\displaystyle{\frac{100}{37}}\ge {{H}^{2}}>\displaystyle{\frac{25}{12}}$
    $\Rightarrow$$\sqrt{\displaystyle{\frac{100}{37}}}\ge H>\sqrt{\displaystyle{\frac{25}{12}}}$
    $\Rightarrow$$(m$,$M)=(25$,$100)$

  7. 開口向下、無交點$\Rightarrow$$k\le 0$、${{k}^{2}}+k-2x$無解$\Rightarrow$$D=4-4{{k}^{2}}<0$$\Rightarrow$$k<0$且$k>1$或$k<-1$$\Rightarrow$$k<-1$

  8. $-2<x<3$$\Leftrightarrow $$(x-3)(x+2)<0$$\Leftrightarrow $$-(x-3)(x+2)>0$$\Leftrightarrow $$a(x-3)(x+2)>0$,其中$a<0$$\Rightarrow$$a{{x}^{2}}-ax-6x>0$$\Rightarrow$$b=a$、$c=-6a$$\Rightarrow$所求即解$a{{x}^{3}}+a{{x}^{2}}-6ax\le 0$,其中$a<0$$\Rightarrow$${{x}^{3}}+{{x}^{2}}-6x\ge 0$$\Rightarrow$$x(x+3)(x-2)\ge 0$$\Rightarrow$$x\ge 2$或$-3\le x\le 0$

  9. $f(x)=a{{(x-1)}^{2}}+b-a$,
    若$a>0$$\Rightarrow$$b-a=-3$,$8a+b=6$$\Rightarrow$$\left\{ \begin{array}{l}
    a=1 \\
    b=-2 \\
    \end{array} \right.$
    若$a<0$$\Rightarrow$$b-a=6$、$8a+b=-3$$\Rightarrow$$\left\{ \begin{array}{l}
    a=-1 \\
    b=5 \\
    \end{array} \right.$
    $\Rightarrow$$(1$,$-2)$或$(-1$,$5)$

  10. 由(1)知對稱中心為$(1$,$3)$$\Rightarrow$$f(x)=a{{(x-1)}^{3}}+p(x-1)+3$且展開後末兩項為$5x+2$$\Rightarrow$$\left\{ \begin{array}{l}
    -a-p+3=2 \\
    3a+p=5 \\
    \end{array} \right.$$\Rightarrow$$\left\{ \begin{array}{l}
    a=2 \\
    p=-1 \\
    \end{array} \right.$$\Rightarrow$$f(x)=2{{(x-1)}^{3}}-(x-1)+3$$=2{{x}^{3}}-6{{x}^{2}}+5x+2$

三、混合題

  1. (1)  $g(x)$為二次但$C(x)$為三次且三次係數$=\displaystyle{\frac{1}{2}}$$\Rightarrow$$f(x)=\displaystyle{\frac{1}{2}}(x-1)(x-2)(x-3)=\displaystyle{\frac{1}{2}}{{x}^{3}}-3{{x}^{2}}+\displaystyle{\frac{11}{2}}x-3$
    (2)  $g(x)=\displaystyle{\frac{f(x)-C(x)+18x}{4}}$$=\displaystyle{\frac{(\displaystyle{\frac{1}{2}}{{x}^{3}}-3{{x}^{2}}+\displaystyle{\frac{11}{2}}x-3)-(\displaystyle{\frac{1}{2}}{{x}^{3}}+{{x}^{2}}-\displaystyle{\frac{1}{2}}x+5)+18x}{4}}$$=\displaystyle{\frac{-4{{x}^{2}}+24x-8}{4}}$$=-{{x}^{2}}+6x-2$
    (3)  $-{{x}^{2}}+6x-2$$=-{{(x-3)}^{2}}+7$$\Rightarrow$當$x=3$時$g(x)$有最大值$=7$s

2 則留言: